설찬범의 파라다이스
글쓰기와 닥터후, 엑셀, 통계학, 무료프로그램 배우기를 좋아하는 청년백수의 블로그
엑셀 구간추정 (2)
엑셀로 통계하기 13 - 구간추정(2)
반응형





지난 시간에는 모표준편차를 알 때

구간추정으로 표본평균이 모평균에 얼마나 가까운지 추측했습니다.


 

표본평균에 더하고 빼는 오차범위는 이랬죠.

 


여기서 α는 유의수준으로,

95%의 신뢰수준이라면 1-0.95=0.05였습니다.




 

모표준편차를 모를 때




그러나 자료 대부분은 모집단 표준편차를 모릅니다.

그래서 표본을 추출해 조사하는 것 아니겠습니까.



 

모표준편차를 모를 때도 오차범위 식은 비슷합니다.

단 두 가지만 다르죠.



 

첫째, 모집단 표준편차 대신

표본 표준편차를 집어넣습니다.

 



둘째, 유의수준에 대한 Z값 대신

t분포에 대한 t을 넣습니다.



 

t분포(스튜던트 t분포)

맥주 양조장에서 일하던 윌리엄 고셋이

스튜던트라는 필명으로 발표한 분포입니다.

 



이 분포는 자유도마다 분포가 하나씩 있습니다.

자유도 1에 대한 t분포,

자유도 2에 대한 t분포... 

(자유도가 커질수록 t분포는 표준정규분포에 가까워집니다.)

 

그럼 구간추정 오차범위에는

어떤 t분포값을 넣어야 할까요?



 

n-1 자유도에서

(n은 표본크기)

양쪽 꼬리 면적이 α/2t값을 넣습니다.

 



엑셀에서는 T.INV.2T 함수를 이용해

확률에 따른 t값을 계산합니다.



 

=T.INV.2T( x , 자유도)

x : 양쪽 누적한 확률

 

유의수준이 0.05, 자유도가 29라면

=T.INV.2T(0.05 , 29)

오차범위에 넣을 t값입니다.

 




사실, 엑셀에는 신뢰수준에 따른 오차범위를 구하는 기능이 있습니다.

 



[데이터] 리본 오른쪽 끝 데이터 분석을 찾으셨나요?

 


없다면 [파일] - [옵션] - [추가기능] - [이동]에서

분석 도구를 체크하고 확인을 누르면 생깁니다.

 


데이터 분석에 들어가서 기술 통계법을 선택합니다.

 



자료 범위를 지정하고

요약 통계량에 체크하고

평균에 대한 신뢰 수준에 원하는 신뢰수준을 입력하고

확인을 누르면 오차범위를 볼 수 있습니다.



반응형
  Comments,     Trackbacks
엑셀로 통계하기 12 - 구간추정(1)
반응형



우린 모집단 통계량을 구할 수 없을 때 표본을 추출해서 조사합니다.




그런데 표본으로 구한 평균이 모집단 평균과 가깝다고 얼마나 확신할 수 있을까요?


*이번 글은 조금 깁니다.

 



과자 공장이 이번 달 생산하는 과자 한 봉지에 들어가는 과자 양을 알고 싶다고 합시다.



 

과자 공장의 공정은 아주 정확하고, 관리도 잘 됩니다.

공정은 20년 전부터 변화가 없었고, 매달 과자 양을 측정해 왔습니다.

 


이렇게

 1) 데이터가 아주 많거나,

2) 공정이 정확하고 잘 관리될 때는

그동안 구한 표준편차를 모집단 표준편차로 가정할 수 있습니다.



 

여기서 표본분포 개념을 잠깐 듣고 갑시다.





표본분포는 무엇일까요. 과자 1000봉지 중 50봉지를 표본으로 추출해서 실험한다고 합시다.


사람에 따라 표본으로 뽑히는 50봉지는 여러 가지입니다. 그럼 그 50봉지마다 알갱이 수의 평균은 조금씩 다르겠죠.

 




이렇게 표본들 자료의 분포를 표본분포라고 합니다.

이 분포의 기댓값은 모집단 평균입니다.

이 곡선의 표준편차는 모집단 표준편차에서 표본수의 제곱근을 나눈 값입니다.




 

모집단이 정규분포라면, 표본평균의 표본분포도 정규분포를 그립니다.




 

모집단이 정규분포가 아니어도, 중심극한정리에 따라 표본 크기가 클수록 표본평균의 표본분포는 정규확률분포에 가깝습니다.

(30 이상이라고 합니다)

 

결국, 표본평균의 분포는 (웬만하면) 정규분포곡선을 그립니다.





 


과자 공장으로 돌아갑시다.




봉지 당 알갱이 수는 정규분포를 그린다고 가정합니다.

모집단 표준편차는 5입니다.

25봉지를 추출해 검사했더니 한 봉지에 평균 30알갱이가 있습니다.

이 표본평균은 모집단 평균에서 얼마나 가까울까요?

 

 


정규분포곡선에서

평균 양옆 1.96표준편차 이내에는 자료의 95%가 들어갑니다.

 

표본평균의 표본분포 그래프에서도

모집단 평균 양옆 1.96표준편차 이내에 표본평균의 95%가 있습니다.

표본평균 표본분포의 표준편차는

5/5=1입니다.

 




방향을 반대로 보면, 표본평균의 95%는 모집단 평균과 1.96표준편차 이하만큼 가깝습니다.

 




즉 우리가 검사한 표본의 평균은 모집단 평균과 1.96표준편차 이내에 있다고 95% 확신합니다.

 




과자 공장에서 보자면

표본에서 나온 평균 30알은 모집단 평균과

1.96X1=1.96

알 이하만큼 차이가 난다고 95% 확신합니다.


즉, 95%만큼 확신할 수 있는 범위는

30-1.96=28.04 에서

30+1.96=31.96입니다.

 

이때 95%신뢰수준 Confidence level입니다.

0.95신뢰계수 Confidence coefficient입니다.

1-0.95=0.05유의수준 Level of significance입니다.

1.96에 표본평균 표준편차를 곱한 것이 오차범위입니다.

그렇게 구한 구간이 95% 신뢰구간 Confidence interval입니다.



이제 과자공장에선 이렇게 말할 수 있습니다.

'우리 공장 과자는 28.04알에서 31.96알 사이가 들었다고

95% 확신할 수 있어.'

 



인터넷에서는 유의수준에 따라 표본분포 표준편차에 곱하는 값(Z)이 나와있으니 참고바랍니다.

 



엑셀에서 오차범위 구하기

 




엑셀에서는 모표준편차를 알 때

오차범위를 구하는 CONFIDENCE.NORM 함수가 있습니다.

 

=CONFIDENCE.NORM(유의수준, 모표준편차, 표본크기)

 

 

그런데 모집단 표준편차를 모르면 어떻게 할까요?

다음 시간에 알아봅시다.



 


주의! 표본평균 표준편차


표본을 추출하는 모집단의 종류에 따라 표본평균 표준편차 공식이 다릅니다.


모집단에는 유한모집단무한모집단이 있습니다.


유한모집단은 말 그대로 자료가 유한합니다.

무한모집단은 자료가 무한하거나 계속 생겨납니다.

과자 공장에서, 과자는 계속 생산되므로 전체 자료가 몇 봉지인지 말할 수 없습니다. 따라서 무한모집단입니다.



 

무한모집단이거나 유한모집단이더라도 n/N0.05 이하일 때는 아까처럼 공식을 씁니다.



 

유한모집단일 때는 여기에 유한모집단 수정인수를 곱합니다.

반응형
  Comments,     Trackbacks