설찬범의 파라다이스
글쓰기와 닥터후, 엑셀, 통계학, 무료프로그램 배우기를 좋아하는 청년백수의 블로그
수리학 (3) 파스칼의 원리 증명
반응형

  지난 시간에 흐르지 않는 물의 압력(정수압)은 한 위치에선 어느 방향에서나 같다고 말했습니다. 물 속 한 지점을 잡으면, 그 지점을 누르는 물의 압력은 방향에 관련 없이 같습니다. 그 수압 크기는 깊이 곱하기 단위중량이며, 기준은 대부분 수면이라 대기압은 무시됩니다.




  하지만 아무리 생각해도 이상합니다. 물이 위에서 누르니까 아래루 누르는 수압은 이해가 됩니다. 하지만 옆에서, 또 아래에서 위로 누르는 수압도 같다니요? 파스칼의 원리로 이것을 증명할 수 있습니다. 지난 시간엔 생략했지만 이번엔 제대로 한번 파고들어 보겠습니다.


파스칼의 원리 증명



여기 정지한 물이 있습니다. 모기 유충도 녹조도 없는 깨끗한 물이군요.





물 가운데에 있는 부분을 임의로 잘라 보겠습니다. 직각삼각형 모양으로 자를 겁니다. 직각삼각형으로 자르는 이유는 나중에 알게 됩니다.




  이 직각삼각형 모양 물은 세 방향에서 힘을 받습니다. 왼쪽에서 받는 수압, 빗변이 받는 수압, 아래에서 위로 받는 수압이 있습니다. 여기에 중력이 물을 아래로 당겨 물 자체의 무게(자중)이 아래 방향으로 생깁니다.


  편의를 위해 축을 긋고 길이를 표시하겠습니다. 저희는 아주 작은 부분을 잘라냈기 때문에 깊이에 따른 수압 변화는 적어도 이 삼각형엔 없는 것으로 간주합니다. 무게는 W로 하고 세 가지 압력은 P로 씁니다.


네 가지 힘을 하나씩 계산해 봅시다.


1) 왼쪽에서 누르는 힘은 압력으로 생깁니다. 압력에 면적을 곱하면 힘이 나올 겁니다. 폭을 dx라 합시다. 그럼 왼쪽에서 누르는 힘은 Px X dz X dy입니다.


2) 아래에서 누르는 힘도 방법은 같습니다. 수압에 면적을 곱합니다. Pz X dy X dx.


3) 빗변을 누르는 힘은 방향이 수직/수평이 아닙니다. 일단 크기부터 구합시다. Ps X dx X ds입니다. ds는 빗변 부분 길이입니다.


4) 물의 무게 W는 단위중량 곱하기 부피입니다. 부피는 직각삼각형 넓이에 dx를 곱한 값입니다.




  정역학을 배웠다는 가정 하에, 우린 힘의 평형식을 세울 수 있습니다. 이 물은 정지한 상태니까 힘의 합력은 0입니다. 평형식을 가로와 세로로 나누어 계산해 봅시다. 먼저 가로(y축)입니다. x축 방향의 힘은 왼쪽에서 누르는 힘과 빗변에서 누르는 힘의 가로 방향성분입니다. 사인(sinθ)을 곱하면 가로 방향이 성분이 나올 겁니다.


(오른쪽 방향을 +로 설정한 것임)


  두 항에 dx가 공통이니까 나누어 없앨 수 있습니다. sinθ는 dz/ds와 같습니다. 이걸 식에 대입하면 ds sinθ를 dz로 고칠 수 있습니다. 따라서 dz도 나누어 없애기 가능해집니다. 그럼 남은 건 두 P뿐이군요.




  Py=Ps가 됩니다. 따라서 옆에서 누르는 수압은 빗변을 누르는 수압과 같습니다. 세로(z축)도 보겠습니다. 세로 방향에 있는 힘은 세 가지입니다. 아래에서 수압으로 누르는 힘, 물의 무게, 빗변에서 누르는 힘의 세로 성분입니다. 세로 성분은 cosθ를 곱하면 나옵니다.



(위 방향을 +로 설정한 것임)


  세 항에 dx가 공통이니까 나누어 없앱니다. cosθ는 dy/ds이고, ds cosθ은 dy입니다. dy로 바꾸어 보니 세 항에 dy가 같이 있게 되네요. 이것도 없앱니다.




  조금 어색한 형태가 되었습니다. 그런데 우리는 한 '점'에 가하는 정수압을 알고 싶습니다. '점'엔 길이가 없으므로 dz를 없앨 수 있습니다. 따라서 Pz=Ps가 성립합니다.




  결과적으로 Py=Pz=Ps가 됩니다. 옆에서 누르는 수압은 위에서 누르는 수압과 같습니다. 우린 θ가 몇 도인지 딱히 정하지 않았습니다. 즉 θ를 몇 도로 하든 상관없이 이 식이 성립합니다. 어떤 각도를 정해 그 각도로 누르는 정수압을 계산해도 모두 같다는 말입니다. 따라서 파스칼의 원리에 따라 정수압은 방향에 무관하다는 것이 증명되었습니다.





반응형

'토목 > 유체역학, 수리학' 카테고리의 다른 글

수리학 (5) 흐름의 분류  (1) 2019.11.11
수리학 (4) 부력 (Buoyancy)  (0) 2019.11.01
수리학 (2) 정수압  (0) 2019.10.29
수리학 (1) 점성, 단위중량, 표면장력  (0) 2019.10.28
  Comments,     Trackbacks