설찬범의 파라다이스
글쓰기와 닥터후, 엑셀, 통계학, 무료프로그램 배우기를 좋아하는 청년백수의 블로그
분류 전체보기 (499)
건설기업 경기실사지수(CBSI)란 무엇일까?
반응형

지난달 건설업 경기실사지수, 전월比 0.2p 하락한 79.1

"한국건설산업연구원은 지난달 건설기업 경기실사지수(CBSI)가 전월 대비 0.2p 소폭 하락한 79.1을 기록했다고 2일 밝혔다..."



  예전에 건설업 동향을 살피기에 좋은 사이트로 소개한 한국건설산업연구원(CERIK). 연구원은 매달 건설기업 경기실사지수(Construction Business Survey Index)를 조사해 발표합니다. 영어 약자로 CBSI라고도 하는데요. 어떤 수치이며 어떻게 조사할까요?


참고하면 좋은 게시물

2019/10/21 - [토목] - 토목업계 동향을 알아보는 방법



  먼저 경기실사지수(BSI)를 알 필요가 있습니다. 경기실사지수는 향후 동향에 대해 기업가들에게 질문해 의견을 모읍니다. 그런 다음 긍정적으로 대답한 비율에서 부정적으로 대답한 비율을 빼서 실사지수를 계산합니다. 예를 들어 70퍼센트가 긍정적, 30퍼센트가 부정적으로 대답했다고 가정합시다. 그렇다면 70-30=40입니다. 기준점은 100이므로 여기에 더해 140이라는 지수가 나옵니다. 반대로 30퍼센트가 긍정적, 70퍼센트가 부정적으로 대답했다면 어떻게 될까요? 30-70=-40이므로 100에 더해 60이 나옵니다.


  보시다시피 기준을 100으로 잡고 이보다 높으면 긍정적으로 예상하는 기업가가 많은 것이며, 100보다 낮으면 부정적으로 예상하는 기업가가 많은 것입니다. 건설기업경기실사지수는 국내 건설인을 상대로 조사한 경기실사지수인 것이죠.




  건설산업연구원 사이트에 들어가시면 매달 발표한 CBSI를 찾아 보실 수 있습니다. 연구원에서는 기업은 대형/중견/중소기업으로 분류하며, 지역은 서울/지방으로 분류합니다.  2019년 10월 조사한 건설기업경기실사지수는 79.1p로 전월 대비 소폭 하락한 상태입니다. 


  기업경기 실사지수는 업계의 체감경기를 알려주지만, 반대로 데이터가 아닌 의견으로 정해지기 때문에 주관적일 수 있다는 단점이 있습니다.



반응형
  Comments,     Trackbacks
프리스트레스트 콘크리트란 무엇일까?
반응형


  산업통상자원부는 10월 29일부터 콘크리트용 보강재 분야 국제표준화회의를 개최했습니다. 이 회의를 통해 우리나라는 프리스트레스트 콘크리트 강선, 이른바 PC 강선 국제표준에 우리나라 기업이 개발한 초고강도 PC강선을 추가할 계획을 세울 예정이라고 합니다. PC 강선은 무엇이며, 프리스트레스트 콘크리트(prestressed concrete)는 무엇일까요?




  콘크리트는 어느 건물에서나 보이는 흔한 재료입니다. 부으면 붓는 대로 모양이 완성되고 굳으면 돌처럼 단단해지는 콘크리트는 안 쓰는 것이 이상한 재료죠. 콘크리트의 다른 특징은 압축강도와 인장강도가 꽤 다르다는 겁니다. 콘크리트를 부어 건물을 만들었다면 눌리기도 하고 당겨지기도 하겠죠. 콘크리트는 당기는 힘에 버티는 능력(인장강도)이 누르는 힘에 버티는 능력(압축강도)에 비해 현저하게 낮습니다. 인장강도의 3분의 1~8분의 1밖에 되지 않습니다.




  콘크리트로 기둥 사이를 가로지리는 막대기(보라고 하는데)를 놓았다고 합시다. 그 위로 사람이 지나다니고 물건을 놓을 테니, 아래로 휠 겁니다.




  아래로 휘면 윗부분은 쪼그라들고 아랫부분은 찢어지겠죠? 즉 윗부분은 압축을 받고 아랫부분은 인장을 받습니다. 어느 쪽을 더 걱정해야 할까요? 콘크리트는 인장에 약하니 아랫쪽을 더 걱정해야 합니다.




  '철근 콘크리트'라는 말을 들어보셨을 겁니다. 철근과 콘크리트는 온도에 따른 팽창/수축율이 거의 똑같습니다. 같이 넣어도 잘 어울리는 '하늘이 내린 재료 콤비'입니다. 자. 철근을 윗부분과 아랫부분 둘 중 어디에 넣어야 할까요? 도움이 더 필요한 아랫부분에 넣어야겠죠? 철근을 넣는('배근한다'고 하는데) 곳은 그래서 아래쪽이 많습니다. 물론 필요하다면 윗부분에도 넣습니다.




  그런데 조금 머리를 굴려 봅시다. 기둥 사이에 놓인 보는 대부분 아래로만 힘을 받습니다. 보의 아랫부분은 인장만 받는다는 말입니다. 그래서 철근을 미리 압축하면 어떨까요? 이러면 압축엔 곤란해지겠지만, 어차피 이 부분은 인장만 받으니까 괜찮습니다. 인장에 대비해 철근을 미리 압축해 놓는 겁니다. 뜨거운 곳에 들어가기 전에 차가운 물을 몸에 끼얹듯이 말이죠.


  이렇게 철근을 미리(pre-) 압축해서 응력(stress)을 준 콘크리트를 프리스트레스트 콘크리트라 부릅니다. '프리스트레스 콘크리트'라고 '트'를 빼고 부르기도 합니다. 약자는 PSC 혹은 PC입니다. 제작방법에 따라 프리텐션과 포스트텐션이 있습니다.

반응형
  Comments,     Trackbacks
수리학 (4) 부력 (Buoyancy)
반응형



  부력이란 유체에 잠긴 물체가 잠긴 부피만큼 차지한 물의 무게만큼 위로 받는 힘을 말합니다. 아르키메데스가 '유레카!'를 외치게 만든 그 원리가 맞습니다. 부력의 예시로는 물 위를 떠다니거나 물 속에 있는 모든 물체를 들 수 있습니다. 거대하고 무거운 유람선도 부력 덕분에 가라앉지 않을 수 있는 것입니다. 중, 고등 과학시간에 한번쯤 들어보셨을 테지만, 오늘은 유체역학에 걸맞게 부력을 증명하고 식으로 계산해봅시다.




부력 증명

  부력의 크기를 어떻게 구할 수 있을까요? 다행히 우리는 정역학과 자유물체도를 압니다.




  물 속에 떠 있는 물체 A를 가정합니다. 물은 흐르지 않고 물체도 정지한 상태입니다. 따라서 합력은 0입니다. 좌우방향은 어차피 상쇄할 테니까 상관이 없습니다. 문제는 상하(연직)방향입니다. 분명 물체엔 W라는 무게가 있습니다. 그런데 왜 아래로 움직이지 않을까요?


  정수압 때문일 겁니다. 정수압은 깊을수록 높습니다. 물체 윗부분을 아래로 누르는 정수압보다 아랫부분을 누르는 정수압이 더 크며, 이 크기가 무게 W를 완벽히 상쇄해 물체가 가만히 있는 것이겠죠. 연직방향 힘 평형식을 적어 봅시다.


(a는 물체의 위에서 본 면적, 윗방향을 +로 설정함)


정수압은 물의 단위중량 곱하기 깊이입니다.




식을 정리하면 (h2-h1)a는 물체의 부피 V와 같아집니다.




  결국, W는 물의 단위중량 곱하기 물체의 부피입니다. 즉 물체의 부피만큼 존재하는 물의 무게와 같습니다. 부력=W=물체만큼 있는 물의 무게. 물체가 울퉁불퉁해서 (h2-h1)a가 부피와 다르다면 어떡하냐고요? 그래도 적분을 이용하면 V가 나옵니다. 완전히 잠기지 않은 물체도 '잠긴 부피'만큼 물이 차지하는 무게가 부력으로 작용합니다.




  선박을 예로 들어 봅시다. 선박의 '잠긴 부피'를 헷갈리기 쉽습니다. 선박은 안이 비어 있지만, 잠긴 부피는 말 그대로 물에 들어온 부피를 말합니다. 만약 선박 안까지 꽉꽉 차 있었다면 물에 가라앉았겠죠. 속을 비웠기 때문에 부력을 유지한 채로 무게만 줄여서 잘 뜨는 것입니다.




응용. 바닥에 닿은 물체

  '바닥을 쳤다면 이제 오를 일밖에 없다'는 자기개발 문구를 자주 봅니다. 논리적으로 맞는 말이긴 한데 올라가기 전에 익사하지 않을까 생각합니다. 아무튼 물속 바닥에 있는 물체가 받는 힘을 구하라는 문제가 간혹 나옵니다. 놀랄 필요 없습니다. 물체가 연직방향으로 받는 힘은 세 가지뿐입니다. 아래로 받는 물체의 무게(중력), 위로 향하는 부력, 바닥에 위에서 받치는 힘입니다. 무게는 이미 알고 부력은 물체 부피를 알면 구할 수 있습니다. 따라서 힘 평형식을 세우면 바닥에서 받는 힘을 구할 수 있습니다.


응용. 뜰까 말까?

  물체를 바다에 던지면 뜰까 안 뜰까?도 부력을 통해 구할 수 있습니다. 물체의 부피를 잰 다음, 물의 단위중량을 곱하면 부력이 나옵니다. 이 부력이 물체의 무게보다 크다면 물체는 둥둥 뜨겠죠. 부력이 무게보다 작다면 가라앉게 될 겁니다. 사실 이 문제는 부력보다는 밀도/단위중량 문제입니다. 늘 밀도/단위중량이 높은 물체가 아래로 가게 되지요.

반응형
  Comments,     Trackbacks
수리학 (3) 파스칼의 원리 증명
반응형

  지난 시간에 흐르지 않는 물의 압력(정수압)은 한 위치에선 어느 방향에서나 같다고 말했습니다. 물 속 한 지점을 잡으면, 그 지점을 누르는 물의 압력은 방향에 관련 없이 같습니다. 그 수압 크기는 깊이 곱하기 단위중량이며, 기준은 대부분 수면이라 대기압은 무시됩니다.




  하지만 아무리 생각해도 이상합니다. 물이 위에서 누르니까 아래루 누르는 수압은 이해가 됩니다. 하지만 옆에서, 또 아래에서 위로 누르는 수압도 같다니요? 파스칼의 원리로 이것을 증명할 수 있습니다. 지난 시간엔 생략했지만 이번엔 제대로 한번 파고들어 보겠습니다.


파스칼의 원리 증명



여기 정지한 물이 있습니다. 모기 유충도 녹조도 없는 깨끗한 물이군요.





물 가운데에 있는 부분을 임의로 잘라 보겠습니다. 직각삼각형 모양으로 자를 겁니다. 직각삼각형으로 자르는 이유는 나중에 알게 됩니다.




  이 직각삼각형 모양 물은 세 방향에서 힘을 받습니다. 왼쪽에서 받는 수압, 빗변이 받는 수압, 아래에서 위로 받는 수압이 있습니다. 여기에 중력이 물을 아래로 당겨 물 자체의 무게(자중)이 아래 방향으로 생깁니다.


  편의를 위해 축을 긋고 길이를 표시하겠습니다. 저희는 아주 작은 부분을 잘라냈기 때문에 깊이에 따른 수압 변화는 적어도 이 삼각형엔 없는 것으로 간주합니다. 무게는 W로 하고 세 가지 압력은 P로 씁니다.


네 가지 힘을 하나씩 계산해 봅시다.


1) 왼쪽에서 누르는 힘은 압력으로 생깁니다. 압력에 면적을 곱하면 힘이 나올 겁니다. 폭을 dx라 합시다. 그럼 왼쪽에서 누르는 힘은 Px X dz X dy입니다.


2) 아래에서 누르는 힘도 방법은 같습니다. 수압에 면적을 곱합니다. Pz X dy X dx.


3) 빗변을 누르는 힘은 방향이 수직/수평이 아닙니다. 일단 크기부터 구합시다. Ps X dx X ds입니다. ds는 빗변 부분 길이입니다.


4) 물의 무게 W는 단위중량 곱하기 부피입니다. 부피는 직각삼각형 넓이에 dx를 곱한 값입니다.




  정역학을 배웠다는 가정 하에, 우린 힘의 평형식을 세울 수 있습니다. 이 물은 정지한 상태니까 힘의 합력은 0입니다. 평형식을 가로와 세로로 나누어 계산해 봅시다. 먼저 가로(y축)입니다. x축 방향의 힘은 왼쪽에서 누르는 힘과 빗변에서 누르는 힘의 가로 방향성분입니다. 사인(sinθ)을 곱하면 가로 방향이 성분이 나올 겁니다.


(오른쪽 방향을 +로 설정한 것임)


  두 항에 dx가 공통이니까 나누어 없앨 수 있습니다. sinθ는 dz/ds와 같습니다. 이걸 식에 대입하면 ds sinθ를 dz로 고칠 수 있습니다. 따라서 dz도 나누어 없애기 가능해집니다. 그럼 남은 건 두 P뿐이군요.




  Py=Ps가 됩니다. 따라서 옆에서 누르는 수압은 빗변을 누르는 수압과 같습니다. 세로(z축)도 보겠습니다. 세로 방향에 있는 힘은 세 가지입니다. 아래에서 수압으로 누르는 힘, 물의 무게, 빗변에서 누르는 힘의 세로 성분입니다. 세로 성분은 cosθ를 곱하면 나옵니다.



(위 방향을 +로 설정한 것임)


  세 항에 dx가 공통이니까 나누어 없앱니다. cosθ는 dy/ds이고, ds cosθ은 dy입니다. dy로 바꾸어 보니 세 항에 dy가 같이 있게 되네요. 이것도 없앱니다.




  조금 어색한 형태가 되었습니다. 그런데 우리는 한 '점'에 가하는 정수압을 알고 싶습니다. '점'엔 길이가 없으므로 dz를 없앨 수 있습니다. 따라서 Pz=Ps가 성립합니다.




  결과적으로 Py=Pz=Ps가 됩니다. 옆에서 누르는 수압은 위에서 누르는 수압과 같습니다. 우린 θ가 몇 도인지 딱히 정하지 않았습니다. 즉 θ를 몇 도로 하든 상관없이 이 식이 성립합니다. 어떤 각도를 정해 그 각도로 누르는 정수압을 계산해도 모두 같다는 말입니다. 따라서 파스칼의 원리에 따라 정수압은 방향에 무관하다는 것이 증명되었습니다.





반응형

'토목 > 유체역학, 수리학' 카테고리의 다른 글

수리학 (5) 흐름의 분류  (1) 2019.11.11
수리학 (4) 부력 (Buoyancy)  (0) 2019.11.01
수리학 (2) 정수압  (0) 2019.10.29
수리학 (1) 점성, 단위중량, 표면장력  (0) 2019.10.28
  Comments,     Trackbacks
jfif는 왜 생기는 걸까? (해결방법)
반응형


  틀림없이 jpg 파일인데 받고 보니 이상한 jfif라는 확장자가 된 사진이 있습니다. 몇몇 이미지뷰어는 잘 읽는데, 못 읽는 뷰어도 있는 데다 업로드도 힘듭니다. 걸그룹 직찍을 모으다 보면 이런 일이 너무 짜증납니다. 어차피 어디 올리지는 않을 거라 상관은 없지만 거슬리기 짝이 없습니다. jfif와 jpg는 아주 유사한 확장자라는 말을 들었습니다. 그래서 jpg 대신에 이 낯선 파일로 다운로드되는 거겠죠. 이런 문제는 윈도우 10만의 문제로 추측됩니다.


2019/05/05 - [정보] - jpg large(jpg 라지) 확장자 변환하기



첫 번째 해결법) 확장자 바꾸기로 해결

말했듯이 jfif는 jpg와 아주 흡사합니다. 파일명에 확장자를 포함하는, 그래서 확장자를 실수로 바꿨다가 파일을 못 쓰게 되는 경우가 있죠? 이게 좋은 점도 있습니다. 확장자를 jpg로 바꾸면 알아서 jpg 파일이 되기도 합니다. 이건 컴퓨터 설정에 따라 되지 않을 수도 있습니다.


두 번째 해결법) 변환 사이트로 해결

이미지파일 확장자를 변환해주는 사이트가 많습니다. 저는 개인적으로 Convertio라는 사이트를 애용합니다.




https://convertio.co/kr/jfif-jpg/


세 번째 해결법) 레지스트리로 해결



  레지스트리를 조절하면 jfif 대신 jpg로 다운받도록 컴퓨터 설정을 바꿔버릴 수 있습니다. [실행]에서 'regedit'를 실행하면 레지스트리 편집기가 켜집니다.(윈도10이라면 바로 '레지스트리 편집기'를 검색하면 됩니다) 이후

HKEY_CLASSES_ROOT\MIME\Database\Content Type\image/jpeg

으로 갑니다.


여기서 Extension의 값이 .jfif라면 .jpg로 바꿔 줍니다. 참고로 제 컴퓨터에는 이 경로가 없었지만, 근원적 해결책이기도 하고 도움이 될까 해서 이 방법도 올립니다.

반응형
  Comments,     Trackbacks
무료 그래프 그리는 사이트 Desmos(데스모스)
반응형



  학교에서 그래프로 수업을 진행하거나, 자기 홈페이지에 그래프를 올리거나, 보고서와 ppt에 그래프를 삽입하고 싶은 분은 주목하기 바랍니다. 물론 엑셀이라는 훌륭한 그래프 그리는 유틸리티가 있습니다. 하지만 엑셀은 점을 바탕으로 그래프를 그리지 공식에 따라 그리지 않습니다. 그래서 데스모스를 추천합니다. 데스모스(Desmos)에 들어가면 무료로 다양한 그래프를 그리고 편하게 다운로드 받을 수 있습니다.


데스모스 가기


사용법




  첫 화면입니다. 오른쪽에 모눈종이가 있습니다. 왼쪽이 입력창입니다.


 함수식을 입력하면 그래프가 나타납니다. 'y='는 포함해도 되고 안 해도 됩니다. '^'를 이용하면 제곱 표현이 됩니다. 왼쪽 아래 키보드 마크를 누르면 계산기처럼 메뉴가 나와서 더 쉽게 식을 쓸 수 있습니다. 쓸 수 있는 식은 꽤 많습니다. 1차함수, 다차함수는 물론이고 삼각함수, 쌍곡선함수(하이퍼볼릭), 원과 타원, 절대값도 가능합니다.




  왼쪽 위 '+'를 누르면 그래프를 추가합니다. +를 누르고 '표'를 추가하면   점 단위로 찍을 수 있습니다. 톱니바퀴 모양을 누르면 설정에 들어갑니다. 이곳에서 그래프를 삭제하거나 그래프 색을 바꿀 수 있습니다. 모눈종이 위 그래프에 마우스를 올리면 자세한 좌표를 볼 수 있습니다.






  화면 오른쪽 위 내보내기 버튼을 누르면 페이지 주소가 생성됩니다. 원하는 곳에 보내서 다같이 그래프를 나눌 수 있습니다. 또 코드를 얻어 웹페이지에 삽입할 수 있고, PNG 이미지 파일로 내보내기할 수도 있습니다. 꽤 기능이 좋지요? 데스모스는 공학계산기도 지원합니다.


공학계산기

반응형
  Comments,     Trackbacks
수리학 (2) 정수압
반응형



  잠수함을 튼튼하게 짓지 않으면 심해에서 수압에 찌그러지게 됩니다. 수압은 물이 만드는 압력입니다. 물도 엄연히 무게가 있는 물질이고 깊이 들어갈수록 물의 무게는 우리를 짓누르게 됩니다. 그렇다면 공학자로서 그 물의 무게를 묻지 않을 수가 없습니다.




  우선 정수압(Hydrostatic Pressure)이라는 개념부터 알고 넘어갑시다. 정수압은 흐르지 않는 물의 압력입니다. 흐르는 물의 압력 즉 동수압은 나중에 알아보고 우선 가만히 있는 수압부터 생각합시다. 상식적으로 깊이 들어갈수록 수압은 세집니다. 아래로 갈수록 위에 있는 물 깊이가 깊어지고 위에서 누르는 물의 양도 많아집니다. 정수압은 그래서 깊이 곱하기 물의 단위중량입니다.




  수압의 단위는 보다시피 [힘/면적]으로 다른 압력의 단위와 같습니다. "이건 위에서 누르는 힘인데, 옆에서 누르는 수압 크기는 어떻게 되나요?"라는 질문이 나올 차례군요. 결론부터 말씀드리면 정수압의 크기는 방향에 무관합니다. 파스칼의 원리라고 하는데요. 깊이만 같다면 어느 방향이든 수압의 크기는 같습니다. 옆에서 누르는 수압도 아래에서 위로 누르는 수압도 똑같습니다. 수학으로 증명할 수도 있습니다만 어려워서 이 자리에서는 설명하지 않겠습니다. 유체역학이나 수리학 책을 보시면 대부분 증명이 있을 겁니다. 아무튼 정수압을 결정짓는 유일한 요소는 '깊이'라고 생각하면 편합니다.






기압




  물도 무게가 있다고 했는데, 공기에도 무게가 있습니다. 물에 들어가지 않아도 우리는 늘 공기의 압력인 기압을 받으면서 살고 있죠. 기압은 물을 누르고 물은 공기와 함께 우리를 누릅니다. 그러니까 우리가 물 속에 있으면 공기+물이 우리를 같이 누릅니다. 하지만 유체역학에서 수압을 구할 때는 기압을 생략하는 편입니다. 지표면에서 일반적인 1기압은 물 10.33m가 누르는 압력과 같습니다. 아주 세지만 대부분의 시험문제에서는 수압만 구하라고 합니다. 정확히 말하면 기압을 무시한다기보다는 1기압은 늘 있는 기준이라고 생각하는 것에 가깝습니다. 당연히 각 잡고 계산에 포함하라면 할 수 있어야 합니다.


*1기압 = 760mmHg = 10.33mH2O = 1.033kg/cm^2


물 속에서 받는 힘


  가로로 널찍한 판을 물 속에 넣었습니다. 이 판이 받는 힘은 얼마나 될까요? 우린 이미 깊이에 따른 정수압 크기를 구했습니다. 판 모든 곳이 수심이 같으니까 정수압도 모든 부분이 같을 겁니다. 힘은 압력 곱하기 면적입니다. 정수압에 이 판의 넓이를 곱하면 됩니다.




  이번엔 세로로 넣어 봅시다. 수문이나 댐 등 많은 구조물이 물 속에 연직(세로)방향으로 설치됩니다. 그러니까 제대로 구해 봅시다. 정수압은 방향에 무관하다는 법칙에 따라 판을 옆으로 누르는 수압의 크기도 깊이 곱하기 단위중량입니다. 다만 아래로 갈수록 깊이가 커지니까 정수압도 커지겠죠. 그림으로 그린다면 사다리꼴 모양이 될 겁니다. 삼각형과 직사각형으로 분리하거나 적분을 써서 힘을 구할 수 있습니다.



반응형
  Comments,     Trackbacks
수리학 (1) 점성, 단위중량, 표면장력
반응형



  수리학은 물()을 다루는 학문입니다. 유체역학이라고도 합니다. 유체는 말 그대로 흐르는 물체로 액체와 기체를 포함합니다. 여기서는 액체, 그중에서도 물만 다룰 예정입니다.


점성

 

  유체는 고체와 무엇이 다를까요? 유체는 흐릅니다. 커다란 바위가 있다고 상상해 봅시다. 여러분은 바위 윗부분을 발로 밉니다. 꽁초를 비벼 끄듯이 말이죠. 그렇다고 바위 윗부분이 흘러내리진 않을 겁니다. 하지만 호수 수면을 발로 밀면 그곳 물은 밀립니다. 바위 윗부분은 다른 부분과 아주 단단히 연결되어 있어서 여러분의 발질에 저항하지만, 물은 다른 부분과 느슨하게 연결되어 있어서 호수 나머지 부분은 여러분의 발질이 물 일부를 움직이는 것을 막지 못합니다. 이렇게 옆으로 뒤틀리는 방향으로 가하는 힘을 전단력이라고 하는데, 유체는 이 전단력에 저항하지 못합니다.

 

  이번엔 여러분이 석유로 가득한 호수를 발견했다고 상상합니다. 이번에도 발로 밀어 봅니다. 신발이 더러워지는 건 상상이니까 괜찮습니다. 물보다는 밀기가 좀 힘들겠죠 . 물론 석유도 조금씩 밀리겠지만 물보다는 덜 밀릴 겁니다. 왜일까요? 석유가 물보다 더 끈적거리기 때문이겠죠. 이 끈적거림을 점성(viscosity)이라 합니다. 점성은 전단력이 주는 변형에 저항하는 성질입니다.



  물과 석유는 점성이 다릅니다. 다르다면 비교할 수 있고 비교할 수 있다면 수치로 나타내야 합니다. 점성을 어떻게 숫자로 표시할 수 있을까요? 뉴턴이 이 물음에 해답을 줬습니다. 여러분이 아는 그 뉴턴 맞습니다. 뉴턴은 중력만 발견한 사람이 아닙니다. 아무튼 이렇게 생각해 봅시다. 액체를 평평한 곳 위에 어느 정도 채웁니다. 그런 다음 판으로 맨 윗부분을 계속 밀기 시작합니다. 마치 러닝머신처럼요.

 

  윗부분은 힘을 받아 흐릅니다. 그 아래도 영향을 받아 흐르겠죠. 다만 아래로 내려갈수록 속도는 줄어들 겁니다. 아주 깊은 곳이라면 속도는 0, 즉 영향을 받지 않겠죠. 문제는 깊어질수록 속도가 줄어드는 양입니다. 석유과 물, 둘 중 어느 액체가 깊어질수록 급격하게 속도가 줄어들까요? 석유는 끈적거립니다. 윗부분이 움직이면 아랫부분도 손을 맞잡고 같이 움직이겠죠. 물은 물렁물렁하니까 윗부분이 움직여도 아랫부분은 지나가라지같은 태도로 대할 겁니다. 따라서 깊어질수록 속도변화가 적은 것이 더 높은 점성을 뜻합니다.


 

  이번엔 석유과 물이 속도변화가 같다고 상상합니다. 어떻게 이런 일이 가능할까요? 윗부분을 움직이게 하는 판에 힘을 조절하면 될 겁니다. 어느 쪽에 더 힘을 주고 있을까요? 석유는 잘 안 움직이니까, 물처럼 속도변화를 내려면 훨씬 더 힘을 줘야 할 겁니다. 그러니까 속도변화가 같을 때 점성은 전단응력에 비례합니다. 결국, 점성은 전단응력 나누기 깊이에 따른 속도변화를 보면 되지 않을까? 이게 뉴턴의 생각이었습니다. 이 값을 점성계수라 부릅니다.



 

  [응력 / (속도/길이) ] 단위를 정리하면 [ 질량 / 길이 X 시간 ]이 됩니다. 이게 점성(점성계수)의 단위입니다. 점성 단위로 그나마 유명한 것이 푸아즈(Poise)입니다. 푸아죄유라는 물리학자에서 유래했습니다. 1P = 0.1kg/m·s입니다. 푸아죄유는 온도에 따른 물의 점성계수 실험식도 세웠습니다.

 

  동점성계수(kinematic viscosity)는 점성계수를 밀도로 나눈 값입니다. 단위는 [길이^2 / 시간]입니다. 동점성계수 단위로는 스톡스(Stokes)가 있으며 1S = 1 cm^2/sec입니다.



 

압축성




  빈 주사기의 끝을 막고 세게 누르면 조금은 들어갑니다. 이런 실험 중학교에서 해보셨는지 모르겠습니다. 주사기 안에는 공기가 들어 있는데 세게 눌러서 들어간다는 건 공기는 압축이 된다는 사실을 의미합니다. 고체는 압축이 안 됩니다. 나무나 강철을 아무리 세게 눌러도 부피가 줄어들지 않습니다(물론 아주 미세하게 줄어들지만 무시합니다). 물은 어떨까요? 물도 세게 누르면 아주 조금 압축이 됩니다. 하지만 유체역학에서 물은 압축이 불가능한 물질로 간주합니다. 지하에서 어마어마하게 큰 압력을 받는 상황을 예외로 두긴 하지만, 앞으로 물은 압축이 되지 않는 것으로 생각하면 되겠습니다.

 

단위중량


  밀도와 단위중량을 헷갈릴 때가 종종 있습니다. 밀도는 질량을 부피로 나눈 값입니다. 단위중량은 무게를 부피로 나눈 값입니다. ‘질량과 무게가 같은 거 아냐?’라는 분은 대학 1학년 기본물리학으로 돌아가 주시기 바랍니다. 물의 단위중량은 약 9.8kN/m^3입니다. 물은 온도에 따라 부피가 달라지니까 온도가 다르면 단위중량도 조금은 변합니다.

 

표면장력



  표면장력은 앞으로 배울 유체역학과 큰 상관이 없습니다. 하지만 시험에 자주 나와서 짚고 넘어가겠습니다. 위키피디아에 따르면 표면장력은 액체의 표면이 스스로 수축해서 되도록 작은 면적을 취하려는 힘의 성질입니다. 표면장력은 모세관 현상을 일으키기도 합니다. 가는 관을 물에 꽂으면 물이 관을 타고 올라갑니다. 물 분자끼리 당기는 힘 때문입니다. 모세관을 타고 오르는 높이를 구하는 공식은 다음과 같습니다.



반응형

'토목 > 유체역학, 수리학' 카테고리의 다른 글

수리학 (5) 흐름의 분류  (1) 2019.11.11
수리학 (4) 부력 (Buoyancy)  (0) 2019.11.01
수리학 (3) 파스칼의 원리 증명  (0) 2019.10.30
수리학 (2) 정수압  (0) 2019.10.29
  Comments,     Trackbacks
교량 투신자살을 막는 롤린더 시스템
반응형



  통계청에 따르면 지난 2018년 우리나라에서 10만 명당 26.2명이 자살했습니다. 한국의 자살률은 OECD 평가보다 두 배 이상 높습니다. 대한민국이 자살 공화국으로 불리는 일도 이제는 일상이 되어 버렸습니다. 그중 교량은 대표적인 자살 장소입니다. 2017년 자살자 중 약 15%가 투신자살했습니다. 이 수치엔 고층빌딩도 포함되겠지만, 우리는 스스로 목숨을 끊는다고 하면 흔히 교량 몸을 던지는 장면을 떠올립니다. 특히 서울에선 마포대교 등 한강 교량에서 떨어지는 사람이 많습니다.





  마포대교는 ‘자살대교’라는 악명이 붙은 다리입니다. 2014년 통계에 따르면 마포대교가 자살률 1위이며 그 뒤를 한강대교, 원효대교, 성산대교가 잇습니다. 대중교통으로 접근하기 좋고 교통량이 많아 사람 자체가 많이 드나들기 때문으로 추정됩니다. 마포대교에 가 보시면 일정 거리마다 자살방지 긴급전화를 설치했고, 난간에는 자살방지 문구를 적어놓았습니다. 하지만 효과가 있는지는 미지수이며 저도 그렇게 효과가 있는지는 모르겠습니다.


금문교에 설치한 안전망(CNN)



  제일 좋은 자살방지 방법은 힘든 사람에게 손길을 내밀고 도와주는 사회를 만들거나 자살할 일이 없는 세상을 만드는 거겠죠. 그러나 실질적인 자살방지 방법은 자살을 하지 못하게 막는 것입니다. 교량 자살방지 시설은 크게 두 종류가 있습니다. 하나는 높은 난간이고 다른 하나는 교량 아래 설치한 안전망입니다. 스위스에서 실시한 연구에 따르면 장벽과 안전망 모두 효과적이었으며 장벽은 최소 2.3미터, 안전망은 통행 고도보다 충분히 낮아야 투신을 줄이는 것으로 드러났습니다.




  장벽과 안전망도 단점은 있습니다. 난간을 높이거나 안전망을 교량 양옆으로 펼치면 보기에 그리 좋지는 않습니다. 미관을 최소한으로 해치면서 자살을 막는 롤린더 시스템이 그 대안일지도 모릅니다. 롤린더(Rollinder)는 회전(Rotation)과 실린더(Cylinder)를 합성한 단어입니다. 돌아가는 원통을 설치해서 짚고 올라가지 못하게 만든 구조물입니다. 아주 높지 않지만 자살자는 빙글빙글 돌아가는 원통을 짚고 올라가야 합니다. 원통은 사람이 한 손으로 쥐지 못할 만큼 지름을 크게 설계합니다. 타고 가기 어렵게 원통들은 교량 쪽으로 기울어지거나 꺾이게 배열합니다.


출처: 시스템코리아



  운동신경과 균형 감각이 좋은 사람이라면 롤린더도 막을 순 없을 겁니다. 어쩌면 흔들흔들 뒤뚱대며 난간을 오르는 자신의 모습이 부끄러워 더 죽고 싶어질지도 모릅니다. 그래도 효과는 있습니다. 2008년부터 2016년까지 창원시 마창대교에서는 33명이 투신해 30명이 사망했습니다. 그러나 2017년 롤린더 시스템을 설치하면서 자살자가 크게 줄었다고 합니다. 마포대교도 여러 겹 케이블 위에 회전형 원통을 설치해서 자살을 매우 어렵게 만들었습니다.


참고문헌

Hemmer A, Meier P, Reisch T (2017). Comparing Different Suicide Prevention Measures at Bridges and Buildings: Lessons We Have Learned from a National Survey in Switzerland. PLoS ONE 12(1)



박세만, 백충현, 최병정. (2019) 추락 및 투신자살 방지시스템의 조사 및 Rollinder System 적용기술. Journal of the Korea Academia-Industrial Cooperation Society. Vol. 20 Issue 5, p591-598. doi:10.5762/KAIS.2019.20.5.591


김현중, 박종칠. (2014) 교량의 자살방지 시설물에 관한 고찰. 대한토목학회 학술대회. 2014.10, 1663-1664

반응형
  Comments,     Trackbacks
동에 번쩍 서에 번쩍 비점오염원이란?
반응형



  수질오염 하면 무엇이 떠오르시나요? 공장에서 나오는 검은 폐수를 주로 떠올리실 텐데요. 현실은 비정한 법. 화학물질로 가득한 폐수도 어떻게 보면 '착한 오염물질'이라면 믿으시겠습니까?




  물론 아주 더럽지만, 공장이 신고하고 배출하는 폐수는 알기 때문에 대처하고 통계에 반영할 수 있습니다. 이런 오염원을 점오염원이라고 합니다. 그러나 언제 생길지 얼마나 생길지 예측하기 어려운 오염이 있습니다. 논에 살포한 농약이나 퇴비가 작물에 흡수되지 않고 그대로 하천으로 흘러갑니다. 도로에 사고로 쏟아진 오일이 하수구를 통해 하천에 섞여듭니다. 아파트 등 생활공간에서 버린 물질이 비가 내리는 날 역시 하천으로 유입됩니다.


  이렇게 불특정한 오염원을 비점오염원(非点汚染源 , non-point pollution source, NPPS)라고 합니다. 점(point)처럼 한 곳에서 배출되는 폐수와 다르게 딱히 '이곳이다' 하지 않은 오염원이라는 뜻입니다. 물환경보전법에 따르면 비점오염원을 '도시, 도로, 농지, 산지, 공사장 등으로서 불특정장소에서 불특정하게 수질오염물질을 배출하는 배출원'으로 정의합니다.



환경부 비점오염원 사이트



  환경부는 비점오염원 사이트를 따로 운영할 정도로 관심을 보이고 있습니다. 그 정도로 문제인 걸까요? 비점오염원은 우선 어디서 어떻게 오는지 예측하고 측정하기 어렵습니다. 언제 생기는지를 몰라서 처리하기도 어렵습니다. 규칙적으로 발생하지도 않아서 처리시설의 효율도 문제입니다.



  도시화로 토지가 개발되면서 물을 흡수하지 못하는 면적이 늘어나고, 따라서 지면에 있던 오염물질이 비와 함께 한 곳으로 모이는 문제도 커지고 있습니다. 현재 환경부는 관리지역 지정제도, 업종에 따른 신고제도를 운영하고 있습니다. 물환경보전법에 따라 산업단지나 염색시설 등을 설치하려면 비점오염원을 설치신고 해야 합니다. 역시 물환경보전법에 따른 비점오염저감시설에는 자연형 시설과 장치형 시설로 분류합니다. 자연형 시설에는 저류시설, 인공습지, 침투시설 등이 장치형 시설에는 여과형 시설, 와류형 시설, 스크린형 시설 등이 있습니다.




  현재 수자원공사는 '비점오염 두루알기 대국민 공모전'을 개최 중입니다. 금강, 영산강, 섬진강 유역 내 국민을 대상으로 한 이번 공모전은 비점오염이 주제인 그림, 포스터, 영상을 받고 있습니다. 저는 서울에 살아서 참가하지 못하겠지만 관심 있는 분은 참고하시기 바랍니다.

반응형
  Comments,     Trackbacks